$ら^{300}$), Ni-Fe (Kondorskii, Sedov³⁹), Kouvel, Wilson⁴⁰), Ni-Fe-Mn (Nakamura $ら^{350}$) である. 4.2K での測定 値は文献 30,33,39) である. それ以外の文献の値は,外 挿法, ないしは熱力学的関係式を使って, $\sigma_{\rm S}$ の圧力係 数の温度依存から推定したものである. $\sigma_{\rm S}$ の圧力効果 の実験が正確であれば,推定値と実験値 (4.2K) とはよ く一致するようである⁴¹⁾. なお, $\sigma_{\rm S}$ の圧力効果の温度 依存からは, ここで述べた $\sigma_{\rm 0}$ の圧力係数が求まるが, いま一つ $T_{\rm C}$ の圧力係数⁴¹⁰も求められる. これらに関し ての熱力学的関係式は Bloch の紹介^{4,23)}が詳しい.

Fig. 7からも **Fig. 5**の場合と同様に、かなりまとまった結果が得られる. すなわち、(i) Ni, Fe, Coの単体では $\sigma\sigma^{-1}(\Delta\sigma\sigma/\Delta p)$ の符号は負であり、しかも大きさはほぼ同じである. この大きさの点については $\Delta Tc/\Delta p$ の傾向とかなり違う. (i)引用したすべての合金系では、符号についてはすべて負である. (ii)絶対値は全体として $\Delta Tc/\Delta p$ の場合よりも比較的Tcが高いところから急激に増加する. (iv) Ni-Cu, -Pd (ここまでは $\Delta Tc/\Delta p$ と同様)、さらに Ni-Pt と三つの系はほぼ一つの曲線に沿って変化しているとみてよさそうである.

(v) Ni-Fe, -Fe-Mn 系は、上記の合金とは別ではある がやはり $\Delta T_c/\Delta p$ と同様に一つの曲線に沿って変化し ており、 図中で位置的に Ni-Cu などの系より絶対値の 増加は T_c の高いところから始まっている. (vi) Invar 合金では $\Delta T_c/\Delta p$ と同様に大きな負の値をとるが、 CF 近くの ($T_{c} \rightarrow 0$) Ni-Pt もほぼ同じくらい大きい.

以上まとめると、**Fig. 5** の $\Delta T_c/\Delta p$ と **Fig. 7** の $\sigma_0^{-1} (\Delta \sigma_0/\Delta p)$ の T_c 依存(組成依存)は互いに決して 無関係でなさそうだ、ということである:書いてしまう と短いが、含む意味は深いと考えてよい.

Fig. 8 $\sigma_{\rm S}^{-1}$ ($\Delta \sigma_{\rm S}/\Delta p$) as a function of $T/T_{\rm C}$ for Ni²⁵⁾.

なお,測定法のところでもふれておいたが, σοの圧力 微分 Δσο/Δp は熱力学的に強制磁歪と結びつく.

長岡・本多先生の論文³⁾ にも既にこのことは少しふれ ておられ、その後も幾つかの論文があったが、本格的な 取り組みとその成功でたびたび引用に出されているの が、Tange、Tokunaga の Ni についての強制磁歪の論 文²⁵⁾である. **Fig. 8** は彼らの強制磁歪の温度依存のデ ータを σ s の圧力係数に換算して T/Tc の関数として描 いたものである.

後述する Mathon⁴²⁾の理論計算で引用されている.文 献 43)の比較的狭い温度範囲での σs の圧力効果の実験 結果も **Fig. 8**の曲線上によくのっている.強磁性 Invar 合金の *T*c, σo の圧力効果も現在注目をあびている研究 で,わが国では京大中村研が精力的にやっておられ、そ こでも強制磁歪が大いに活用⁴³⁾されている.

3.2 鉄族強磁性元素と希土類元素との金属間化合物

3.1では鉄族 (3d) 強磁性元素 Fe, Co, Ni (以下 M と 書く) 同士, およびそれらのうち, とくに Ni と 3d, 4d, 5d 遷移元素との合金を取り扱ったが, いま一つ磁性面 で重要な元素が希土類元素*(R と書く)で, 磁性は 4f 電子が担う. この節では, Y, La, Th も R に加えて M と R との強磁性金属間化合物をとり上げる.

一般に M と R とは、かなり多くの組成比で化合物を 作り,結晶構造もまた多様である.またYなども同じ 傾向を示す. R-M で強磁性を示す化合物の例をあげる 2, RM2 (cubic, hexagonal), RM3 (hexagonal, rhombohedral), R2M7 (hexagonal), RM5 (hexagonal), R2M17 (hexagonal, rhombohedral) などである(括弧内は結晶 構造である).磁性面からみると,これらの化合物は常圧 下で系統的によく調べられている44).一方,圧力効果を 考えるに際して有益と思われる情報は, M 原子はこれら R-M 金属間化合物中でも M 単体金属中にあるときとほ ぼ同じ電子状態を保ち,したがって電子間相互作用も 3d 間の方が 4f 間のそれよりも大きい, ということであ る. このことは、圧力効果においても 3.1 で取り扱った 鉄族基金属合金と, 全般にわたってということはないに しても, まとめればかなり似た結果が期待されそうであ る. さらに, 化合物では原子の結晶学的配位が決まって いることに対して3.1の場合は不規則合金であることに ついては, R-M 化合物は上述のように組成比および元 素間の組み合わせの数も多いため、化合物全体としては ほぼ合金系として取り扱ってもよさそうである.

緒言で引用した Patrick (1954)2)が既に Gd の ムTc/ムp

* 最近では永久磁石材料とか、クリーンエネルギーに 関連した希土類水素化物など、応用面でも注目をあ びているため基礎研究も一段と深くやる必要性があ る. を測定していることからみても、希土類も単体から始ま って、合金、化合物と磁性の圧力効果のデータもまた膨 大⁴⁾である.さらに結晶構造が積層的にみて似かよって いる希土類には、圧力誘起の結晶変態⁴⁵⁾も起こり、圧力 効果全般についても興味ある事項は豊富である.

3.2.1 キュリー点の圧力効果

さて R-M 系の磁性の圧力効果のうち,とくに $4T_{cl}$ 4p は,最近欧州で精力的に研究されておりデータも豊 富である. **Fig. 9** はそれらのまとめである. ただしデ ータには R と M との組成比は記入せず R に対する M の種類のみを与え, **Fig. 5** と同じように Tc の 関数と してまとめた. 引用した文献は Bloch ら⁴⁶⁾, Bloch, Chaissé⁴⁷⁾, Brouha, Buschow^{48,49)}, Jaakkola ら⁵⁰⁾ であ る. なお, すぐわかるように, Co グループのなかで Y-Co 系と, ThCos+x (0.2 $\leq x \leq$ 3.8) とは他の R-Co とそ れぞれ別の記号で示しておいた. 測定は自己・相互誘導 法によっている (**2**. 参照).

Fig. 5, 7にならうと、**Fig. 9**ではっきりいえる結果 は以下のとおりである. (i)まず ThCos+x系(\bullet)はお どろくほど **Fig. 5**の Ni-Fe 系の Tc 依存に似ており, さらに $\Delta Tc/\Delta p$ の絶対値の最大値も Invar 合金のそれ に近い. (i) Fe 系は、Tc 依存の曲線の曲率の符号がこ れまでに引用した系と逆ではあるが、Tc の減少に伴い、 $\Delta Tc/\Delta p$ の符号の逆転は起こっている. (ii) 符号の逆 転は Tc の高い Co 系でも起こっている. (iv) Ni 系は、 符号は負であるが、 $\Delta Tc/\Delta p$ さらには Tc にも R 依存 性がほとんどなく、両方とも値は小さい. 言い換えると Ni グループは限られた領域に Tc, $\Delta Tc/\Delta p$ とも集中し ている. (y) それに反して Co グループは Tc, $\Delta Tc/\Delta p$

Fig. 9 $\Delta T_{c}/\Delta p$ as a function of T_{c} for RM intermetallic compounds. See the text about the dotted line in this figure.

とも存在範囲が広い. R-Co 系では T_c が減少すると $\Delta T_c/\Delta p$ の絶対値が小さくなる枝があるが、これは RCo₂ 系列である.

なお、Fe グループの $\Delta T_c/\Delta p$ の符号の逆転は、Y-Fe 系では組成比に対して非常に系統的で興味深いので、 Buschow G^{51} より引用した T_c の p 依存性を別個に **Fig. 10** にのせた.

また **Fig. 9** にはのせなかったが、3元系 Th(Co_x Ni_{1-x}) $_{5^{20}}$, La(Co_xNi_{1-x}) $_{5^{50}}$ では Tc が減少すると Δ Tc/ Δ p はほぼ一定となる。強いて傾向だけを対応させれば **Fig. 5** の Ni-Cu のようである。

3.2.2 自発磁化の圧力効果

 σ_0 の圧力効果は T_c のそれに比べると数は少ない.また組成も片寄っている. Table 2 は Buschow G^{51} の論文から引用したものである.系統的なものは得られないが、ただ一つ σ_0 が圧力によって増加するという結果が

Fig. 10 Pressure dependence of T_c for YFe compounds⁵¹⁾.

 Table 2
 Effect of pressure on magnetization for several intermetallic compounds⁵¹⁾.

	and the second	and the second s
	$\frac{1}{\sigma_0} \frac{\mathrm{d} \sigma_0}{\mathrm{d} p}$ (kbar ⁻¹)	d ln σο d ln V
ThCo ₅	0 ± 0.5 10^{-3}	3 0
Y2C07	0±0.5	0
YCo3	-1.7 ± 0.5	2
Y ₂ Fe ₁₇	0±0.5	0
YFe ₂	1±0.5	-1
CeFe ₂	-2.7 ± 0.5	2
Th ₂ Fe ₁₇	1±0.5	-1
ThFe5	1 ± 0.5	-1
Th ₂ Fe7	1.5 ± 0.5	-1.5
ThFe3	$- 5 \pm 0.5$	5
	An and a second s	A CONTRACTOR OF THE OWNER